Accuracy, Resolution, and Stability Properties of a Modified Chebyshev Method

نویسندگان

  • Jodi L. Mead
  • Rosemary A. Renaut
چکیده

While the Chebyshev pseudospectral method provides a spectrally accurate method, integration of partial differential equations with spatial derivatives of order M requires time steps of approximately O(N−2M ) for stable explicit solvers. Theoretically, time steps may be increased to O(N−M ) with the use of a parameter, α-dependent mapped method introduced by Kosloff and Tal-Ezer [J. Comput. Phys., 104 (1993), pp. 457–469]. Our analysis focuses on the utilization of this method for reasonable practical choices for N , namely N 30, as may be needed for twoor threedimensional modeling. Results presented confirm that spectral accuracy with increasing N is possible both for constant α (Hesthaven, Dinesen, and Lynov [J. Comput. Phys., 155 (1999), pp. 287–306]) and for α scaled with N , α sufficiently different from 1 (Don and Solomonoff [SIAM J. Sci. Comput., 18 (1997), pp. 1040–1055]). Theoretical bounds, however, show that any realistic choice for α, in which both resolution and accuracy considerations are imposed, permits no more than a doubling of the time step for a stable explicit integrator in time, much less than the O(N) improvement claimed by Kosloff and Tal-Ezer. On the other hand, by choosing α carefully, it is possible to improve on the resolution of the Chebyshev method; in particular, one may achieve satisfactory resolution with fewer than π points per wavelength. Moreover, this improvement is noted not only for waves with the minimal resolution but also for waves sampled up to about 8 points per wavelength. Our conclusions are verified by calculation of phase and amplitude errors for numerical solutions of first and second order one-dimensional wave equations. Specifically, while α can be chosen such that the mapped method improves the accuracy and resolution of the Chebyshev method, for practical choices of N , it is not possible to achieve both single precision accuracy and gain the advantage of an O(N−M ) time step.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

RBF-Chebychev direct method for solving variational problems

This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...

متن کامل

Stability Analysis for Wake Flow Behind a Flat Plate

Neutral stability limits for wake flow behind a flat plate is studied using spectral method. First, Orr-Sommerfeld equation was changed to matrix form, covering the whole domain of solution. Next, each term of matrix was expanded using Chebyshev expansion series, a series very much equivalent to the Fourier cosine series. A group of functions and conditions are applied to start and end points i...

متن کامل

Modified frame algorithm and its convergence acceleration by Chebyshev method

The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...

متن کامل

Stability Analysis for Wake Flow Behind a Flat Plate

Neutral stability limits for wake flow behind a flat plate is studied using spectral method. First, Orr-Sommerfeld equation was changed to matrix form, covering the whole domain of solution. Next, each term of matrix was expanded using Chebyshev expansion series, a series very much equivalent to the Fourier cosine series. A group of functions and conditions are applied to start and end points i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2002